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SUMMARY 

This paper discusses the calculation of quasi-three-dimensional incompressible viscous flow by FEM. The 
Reynolds-averaged Navier-Stokes equations are solved in curvilinear co-ordinates by the reduced integra- 
tion and penalty method (RIP). Streamline upwind artificial viscosity (SUAV) and the Baldwin-Lomax 
algebraic model of turbulence are used. Time discretization is by the general implicit &method. 
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INTRODUCTION 

This paper presents a numerical modelling of the incompressible viscous flow by the finite 
element method (FEM), using a standard personal computer. The fully three-dimensional flow is 
approximated by the quasi-three-dimensional model of flow in two sets of stream surfaces, one 
extending in the circumferential direction, and the other in the radial direction. ', The formula- 
tion of this problem is based on the theory presented by Girault and R a ~ i a r t . ~  Penalization and 
reduced integration4, 5 * 6  are used to eliminate the pressure unknown from the system of equa- 
tions to be solved. The quadratic triangular element satisfying some Oden4 requirements is used. 
To obtain the wiggle-free solution and to eliminate any crosswind artificial diffusion, the mesh 
refinement and the streamline upwind artificial viscosity method are applied. (Artificial viscosity 
is added only in the flow direction.) This method is based on the approach of Thomasset,' Brooks 
and Hughes,' Gresho and Lee,' Kikuchi and Ushijima," MarSik and DanEk," etc. The 
Baldwin-Lomax algebraic model of turbulence as modified by Rodi and Srinivas" has been 
selected so that calculations could be realized on a standard personal computer. 

FORMULATION OF STATIONARY PROBLEM 

First, we formulate the problem of the stationary turbulent flow using curvilinear co-ordinates. 
Let q l ,  qz, q3 be curvilinear orthogonal co-ordinates with the Lame coefficients L1 =L1 (qz), 
L2 = L2 (qJ, L3 = L3 (41, q2), (q l  q2)  be a computational stream surface with q3 = constant and 
L3 = A ( q 3 )  be the variable thickness of fluid layer over (q l  q2). Moreover, suppose that the velocity 
u=(ul,  u2 ,  0) is parallel to the computational stream surface, du/Jq3 = O  and div(u)=O. 

Consider the dimensionless problem, that is, v = Re- ' .  Let v, (effective viscosity) be a known 
function and u (velocity) and  pressure) be unknown functions. Now the problem can be 
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formulated this way: 

(u - V)u= V *(veVu) + V - (v,Vu)* -Vp+ f, in R, (1) 

div(u) = 0, in 12, (2) 

u Ir, = T (inflow and adherence boundary condition), (3) 

(4) 
au  

v,----pnlr2 = O  (outflow boundary condition), an 

(periodic boundary condition). (5 )  

Here rl u r2 u Ts = r is a boundary of a Lipschitz continuous bounded domain R, n 
and f l r  is the restriction of a function f on r (see Figure 1). 

= - n l r 2  

Let us introduce the following function spaces: 

Z = {V E (W'. (R))', v lrl = 0, v Ir; = Y  Ir; }, 
W= {v E (  W',* (Q))', div (v)=O}, 

V= {v EZ, div (v) = 0}, 

M = { r  E L2 (12) } , 

(M={reL2(12) ,  (r ,  1)=0) when r2=@ 

(4)  

(7) 

(8) 

(9) 

(9') 
and operators: 

a(u, v)=(v,Vu, VV), (101 

(1 1) 

c(u, v) =( - v * (V,VU)*, v), (12) 

(1,  v> =(t 9. (13) 

b(w; u, v) = ((w V) u, v), 

Here (. , .) is the scalar product in L2 (R), the dot represents the scalar product in R2, and WkSp(Q) 
is the usual Sobolev space. We suppose that t is a trace of some function t E W. Now we can 
formulate weakly the problem defined by equations (1H5), as follows: 

u - t € V ,  P E M ,  (14) 
a(u, v)+b(u; u,v)+c(u, v)-(p, div(v))=(l, v), VVEZ. (1 5 )  

We define the finite-dimensional spaces Z h  c Z, Mh c M for every h (h is a characteristic 
parameter of a mesh) and the space 

V h = { V h E Z h ,  ( q h ,  div(vh))=O, VqhEMh}. (14)  

U h - f h E  v h ,  (1 7) 

a ( U h r V h ) + b ( U h ; U h r v h ) + C ( U h , V h ) = ( I h ,  v h ) ,  V V h E  Vh, (18) 

Now the problem defined by equations (14) and (15) can be formulated in the discrete form as 
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‘ 2  

- - -_ -  - ____-_----___ - -- - - 
Figure 1. Co-ordinate lines and boundary description for cascade flow 

PENALJZATTON AND REDUCED INTEGRATION, FINITE ELEMENT 
DEFINITION 

To eliminate the pressure from the system of equations, penalization is used. This is a regulariz- 
ation of the problem defined by equations (19H21) by means of 

1 
PE, h =  -- Ph(diV(U&. h)), (22) 

E 

P h  being the orthogonal projection operator in L2 (Q) onto Mh. Now the formulation has the form 

% , h - f h  E zh, (23) 
1 

a ( U c , h ,  vh)+b(%,h; %,hr V h ) + C ( b , h ,  vh)+; (Ph(diV(U,,h)), Ph(diV(Vh)))=(k vh), V V h E Z h .  (24) 

The problem of the selection of parameter E is described for the laminar case in Reference 6. In 
the case of turbulent flow, the situation is rather complicated and parameter E is corrected during 
iteration. 

The term (ph(div (I&, h)), ph(diV (vh))) is calculated by means of the reduced integration 

(ph(div(%, h))r Ph(div(Vh)))=l(div(U&,h) div(vh)). (25) 
Here I is an integral calculated by a quadrature rule of order lower than the quadrature rule for 
the other members of equation (24). 
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As a finite element, the quadratic triangle is selected. The degrees of freedom are the velocities 
at the vertices and mid-side nodes. This element is suboptimal for the pure planar problem (it is of 
the same order of accuracy as the P I  non-conforming triangle), but should be preferred in the case 
of curvilinear co-ordinates. Here Pk is the space of all polynomials of degree less than or equal to 
k (integer k). The quadrature rule, exact for P 3 ,  with quadrature points in the vertices and 
barycentre is used for full integration;' the three-point rule with quadrature points in the 
mid-side nodes and the following formula 

c c 
1 

I(diV(U,,h)div(Vh))=x J div(u,,h) dK J div(vh) dK 
K meas ( K )  K K 

are used for reduced integration6 (here K is a finite element). 

LINEARIZATION, UPWINDING 

The non-linear problem defined by equation (24) can be linearized by successive approximation 
(which appears more robust than the Newton method) and then the following under-relaxation is 
used: 

Figure 2. Finite element description 
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The upwinding method follows from the artificial viscosity but now the artificial 
viscosity operator is constructed so as to operate in the flow direction only and to eliminate 
any crosswind artificial diffusion. The streamline-upwind formulation follows from References 7 
and 8. Consider the equation 

acp 
- + (u - V)cp = v * (V.V q) +f 
at 

in curvilinear co-ordinates q l ,  q 2 ,  q3 and choose the scalar artificial viscosity on a finite element 
K (Figure 2) as follows: 

v*={ v,(cK)y~/J15 in the transient case, 
v,(cK)ycl/2 in the steady case, 

y=- 

Here 11 11 is the norm in R2, tij is the unit vector in the direction P I P j ,  and cK is the barycentre of 
the element K .  Now the artificial viscosity operator supplements the term V (veVq) on the finite 
element K with the term 

(vA/ 11 u(cK) 112)(u(cK)'v)2(P. (29) 

TURBULENCE MODEL 

Because calculations were made on a personal computer, great attention is devoted to the choice 
of a turbulence model. Both the algebraic models and the k--E model have been considered. 
According to the literature,' algebraic models of turbulence are more robust and severally 
economical; moreover, the k-c model shows no clear overall advantage. (For attached flow both 
models produce fairly good results, but in large separation regions neither of the models agrees 
sufficiently with the experimental results. Using the Baldwin-Lomax model, the predicted 
separation is usually too small, and the k-& model tends to overpredict.) 

From algebraic models of turbulence, modifications of the Rostand model and the 
Baldwin-Lomax model have been tested; the Baldwin-Lomax turbulence model in the modifica- 
tion presented in Reference 12 appears to be the most suitable. 

TIME DISCRETIZATION 

Analogous to the stationary problem, we now consider the following time-dependent problem: 

aU 
-+(u-V)u=V.(v ,Vu)+V*(veVu)*-Vp+f ,  at inSZxR', (30) 

div(u)=O, in R x R+ , (3 1) 

(32) u I r, R +  = 2, 
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u(t=O)=uo, in Q. (35) 
Let us define the function space 

H = {V E ( L * ( ~ ) ) ~ ,  div(v) =0, v . n lrl =O> . 
Now the problem can be formulated as follows: 

u, - t E L2 (0, T ; Z )  n L~ (0, T;H),  u,(t = 0) = uo, (37) 
1 (2, v) +a(u,,v)+ 0,; u,,v)+c(u,,v)+- E (ddiv(u,)), ~(div(v)))= <l,v) 

VVEZ, in D'(0,T). (38) 

Here Lp(O, T ;  2) is the abstract space of the vector-valued  function^,^ D(0, T )  is the space of 
functions infinitely differentiable and with compact support on (0, T) ,  and D'(0, T )  is the dual 
space of D(0,  T).  

Figure 3. Meridional flow in the impeller of a 
centrifugal pump. Laminar case (Re = lo3) 

Figure 4. Meridional flow in the impeller of a 
centrifugal pump. Turbulent case (Re = lo5) 
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Figure 5. Streamlines in a stage of a centrifugal pump 
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Figure 6. Flow past a stator blade of a centrifugal pump ( R e = Z x  lo’) 
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Figure 7. Comparison of the calculation with the LDA experiment: -calculation; 0 experiment 
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Consider the general &method of time dis~retization:~ 

This is the so-called fully implicit scheme for 8 = 1 (of the first order and strongly A-stable) and the 
so-called trapezoidal rule for B = 0.5 (of the second order and A-stable). 

Let us define an operator 

(39) 
1 

At ao(u,v)=-(u,v). 

Now the problem can be formulated in the discrete form 

When B =  1, it suffices to take K =  1; when 8 = 0 5  we must take K =  1.5, so as to obtain the 
second-order scheme. 

SOME NUMERICAL RESULTS 

Many numerical tests were carried out6 to verify the numerical algorithms presented, and the 
results agreed well with the literature. Some calculations and comparisons with experiments are 
presented in this paper. 

The meridional flow calculation in the centrifugal pump is presented in Figures 3 and 4. Shown 
in Figure 3 is the velocity field of laminar flow (Re= lo3); in Figure 4, the velocity field of 
turbulent flow (Re= LO5). (The Reynolds number is related to the inlet diameter and inlet 
velocity.) 

The flow in the stator of a radial centrifugal pump is presented in Figures 5-7. Figure 6 shows 
the flow calculation in the central axisymmetric stream surface S1 (the projection of which is the 
central streamline of meridional flow-see Figure 5). The fluid layer thickness over this stream 
surface S1 varies according to the distance between the neighbouring streamlines of the meridi- 
onal solution. (The Reynolds number Re=2  x lo5 is related to the profile chord and inlet 
velocity.) Calculations and experimental data (LDA  experiment^'^ conducted in the Pump 
Research Institute, Olomouc) are compared in Figure 7. 

The flow in the SKODA-ETALON SE1050 turbine cascade (experiments conducted in 
the Institute of Thermomechanics, Czechoslovak Academy of Sciences15) is presented in 
Figures8-10. Figure8 shows the velocity field of the tubrulent flow. (The Reynolds number 
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Figure 8. Flow past the SKODA-ETALON SE1050 turbine blade (Re= 1 .1  x lo6) 

relating to the profile chord and the outlet isentropic Mach number Reis= 1.1 x lo6, the outlet 
isentropic Mach number M2,,=0-511, and the incidence angle i =  - 4 O O . )  Figure 9 shows the 
constant-pressure lines resulting from the calculation relative to an interferogram. The distribu- 
tion of pressure along the blade surface is shown in Figure 10. We have presumed that differences 
between incompressible and compressible flows are negligible for Mach numbers up to 05 ,  and 
that the flow is adiabatic, to allow the evaluation of the interferogram and a comparison of the 
calculations with the experimental data. 

All the above calculations were carried out as a steady-state case. Figure 11 shows the 
time-dependent calculation of flow past a circular cylinder and the development of the Karman 
vortex street. (The Reynolds number Re= 10' is based on the inlet velocity and the cylinder 
diameter.) The resulting Strouhal number Sh = 0.162. 
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Figure 9. Comparison of constant-pressure lines with an interferogram 
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Figure 10. Distribution of pressure along the blade surface (pol is the total pressure in the inlet plane, b is the chord 
length): __calculation; 0 experiment 

CONCLUSIONS 

Numerical results presented were obtained from overly coarse grids because a standard PC-AT 
was used for the calculations. (Blade-to-blade computational times were over 30 h on 
a 286/16 MHz PC and about 2.5 h on a 486/33 MHz PC; meridional calculations took about half 
of these times.) In spite of these limitations, qualitatively, the results agree well with the 
experimental data, and we are encouraged to continue this work and develop a more general 
quasi-three-dimensional attitude with full accounting for the interaction between the S1 and S2  
solutions. 
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t = O  

t = 26 t = 29.6 

t = 38.4 
Figure 11 .  Flow past a circular cylinder. Karman vortex street (Re=  10') 

APPENDIX: NOMENCLATURE 

bounded domain with Lipschitz continuous boundary 
boundary of i2 
space of functions infinitely differentiable and with compact support on SZ 
Sobolev space 
abstract space of vector-valued functions 
norm on R2 
scalar product of R2 
dual space of V 
scalar product of L2(Q) 
duality 
measure of the set K 
restriction of the function u on the set K 
characteristic parameter of a mesh 
triangulation of a domain 
space of all polynomials of degree less than or equal to k in two variables 
curvilinear orthogonal co-ordinates 
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L,  Lame coefficients 
co-ordinate line (ql =constant, q2 = constant) 
computational co-ordinate surface (q3 =constant) 
variable thickness of fluid layer 
unit outward normal 

normal derivative 

velocity 
static pressure 
total pressure 
total pressure at the inlet plane 
kinematic viscosity 
effective viscosity, v, = v + vI 
turbulent viscosity 
Reynolds number 
Mach number 
chord length 
incidence angle 
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